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Abstract—We study the minimum latency broadcast scheduling
problem, in which a single source has a quantity of data that
must be transmitted to all other nodes in a multi-hop network in
minimum time. Aside from the obvious application to classical
communications, this problem also relates to some more general
problems in the field of network science. Previous approaches
to scheduling have assumed a simplistic collision model of
interference, while others have studied the more realistic physical
model of total received interference power. Existing suboptimal
approaches for transmitting the data typically assume a collision-
free, fixed-rate, single packet transmission. In this work, we
devise an optimal approach for broadcast under a physical
interference model with fixed-rate, single packet transmission by
converting it to a shortest path problem for an unweighted, undi-
rected graph. Since this optimal approach does not scale well, we
also consider a suboptimal layered approach which separates the
routing and scheduling functions, but relaxes the fixed-rate, single
packet assumption. This goes beyond the signal-to-interference-
plus-noise (SINR) threshold model to allow for rate adaptation as
a function of SINR. We include improvements on previous routing
approaches, and we formulate a linear programming approach
to the variable-rate scheduling for broadcast. Simulations show
that in some special cases, this variable-rate layered approach can
even outperform the optimal fixed-rate, single packet approach.

I. INTRODUCTION

Network-wide broadcast is understood to be a fundamental
operation in ad hoc networks, necessary in communication
protocols such as route or service discovery, as well as infor-
mation dissemination for military surveillance or emergency
disaster relief. Latency is an important measure of performance
for these applications and should be minimized to streamline
the user experience. In some applications, a simple flooding
algorithm may be sufficient, but in other cases, it may be
necessary to optimize the broadcast schedule at time scales
finer than that which a human operator can perceive, for
applications in which every fraction of a second matters. For
example, a network may require a fast triggered automated
response to defend itself against cyber attacks, so that all
other nodes in the network can be made aware of the attack
in minimum time. This problem is of interest to the field of
network science, for minimizing the effectiveness of attacks
in some large, complex network. The present work provides
some insight into this problem by proposing a complex model
of data broadcast through a wireless network, and then de-
composing the model for reduced complexity.

Early studies on minimum latency broadcast focused on
collision-based models of interference, where the network

is represented as a graph and simultaneous reception from
different neighbors leads to a collision. The broadcast problem
for this graph-based approach has been shown to be NP-
hard, both for general [1] and unit disk graphs [2], and many
approximation algorithms have been proposed (see [3] and
references therein). The problem has also been studied under
the more realistic physical interference model as defined in [4],
which assumes a successful transmission provided that the
signal-to-interference-plus–noise-ratio (SINR) is above some
threshold. In Huang et al [5], the authors propose tiling the
plane on which the network lies to construct a backbone
network, and coloring the tiles so that backbone nodes in
the same colored tiles can transmit simultaneously without
too much interference. This tiling approach has been used in
other works to manage interference [6], [7], but tiling may
be overly conservative in avoiding interference, depending on
the exact location of the nodes. Also, these approaches did
not consider the possibility of rate adaptation, in which a
higher SINR allows for a potentially higher rate transmission.
Rate adaptation was considered in [8], where the tradeoff was
between transmitting at a higher power/rate and having more
simultaneous transmissions at lower power (less interference).
The optimal approach was shown to be NP-hard, and a heuris-
tic approach was developed under the less realistic protocol
interference model [4], in which non-receiving nodes within
some interference range cannot receive from their intended
transmitter. None of the above works consider the physical
interference model with rate adaptation.

Our contributions in this work are as follows. First, we solve
for the optimal fixed-rate minimum latency broadcast under the
physical model of interference, based on framing the schedule
as a path in a state diagram. For a basic network, we compute
the complexity of solving for the shortest path of its state
diagram, which yields the minimum latency schedule, and the
computational complexity is shown to be exponential in the
number of nodes. Second, due to the poor scalability of the op-
timal fixed-rate approach, we consider a layered approach that
first generates a routing tree and then schedules the (identical)
data from one layer of the tree to the next, but rate adaptation
is now allowed. We propose a novel routing enhancement (re-
layering), and we adapt the column generation approach used
in optimal link scheduling approaches [9], [10] to the solve the
layer-by-layer broadcast schedule. Simulations are provided to
compare the performance of the two approaches.



II. BROADCAST NETWORK MODEL

The networks we consider in this work are modeled as
geometric networks, such that the set of nodes in a network is
represented by a finite point set V in a two-dimensional plane.
We assume all nodes have a uniform transmission power K.
For the analysis in this work, we assume a simple channel
model that only assumes path loss, but extension to other
channel models (e.g., fading) is straightforward. The received
power at node v from a transmission from node u is given
by Φ(v, u) = K

dα(v,u) , where α is the path loss exponent and
d(v, u) is the Euclidean distance between nodes u and v. We
assume a physical interference model, where reception at a
node depends on the Signal-to-Interference-plus-Noise-Ratio
(SINR) at node v:

SINR(v, u,S) =
Φ(v, u)

γ +
∑

w∈S Φ(v, w)
(1)

where γ is the background noise, and S is the set of senders
transmitting simultaneously with node u. A single source node
s ∈ V is in possession of a packet at time 0, and the goal is
to broadcast the packet from s to all other nodes in V in
minimum time. It is possible that some nodes in V cannot be
reached due to limitations of the transmission range, so we
are only concerned with those that can be reached, potentially
over multiple hops, from s. We call those nodes connected
nodes.

III. OPTIMAL FIXED-RATE BROADCAST

We begin by studying a system in which the data rate
of transmissions is fixed, and the data is transmitted as a
single packet. Transmissions are considered successful if the
SINR (1) is greater than some threshold β. In the absence
of any other transmitters, this threshold defines the maximum
transmission range of a node, which can be used to determine
the connectivity between nodes. Given this setup, the schedule
length can be viewed as the number of slots needed to
broadcast the packet from the source to all other nodes.

To represent the possible broadcast schedules, we construct
a graph, which we call a virtual graph, in which the vertices
represent network states that correspond to the set of nodes
that are in possession of the packet. Directed edges between
vertices in the virtual graph are generated as follows: for some
previous state, a directed edge to a next state exists when the
set of nodes with the packet in the next state includes those
in the previous state, plus nodes that could be added via one
slot of transmission from the original previous state’s nodes.
Those added nodes can be determined by selecting a set of
transmitting nodes (from those in the original previous state)
and computing the SINR at all of the other nodes to see if
reception was successful.

An example of this kind of virtual graph is represented
in Fig. 1. For simplicity, we use a graph representation of
a network and assume a collision model of interference.
Specifically, a transmitting node has its packet received by its
one-hop neighbors in the graph error-free, provided no other
nodes are transmitting to the same neighbor at the same time.

Initial State

End State

1 slot

2 slots

3 slots

Fig. 1. Virtual graph for optimal fixed-rate approach.

In Fig. 1, the black nodes are in possession of the packet,
and the white nodes have not yet received the packet. The
virtual graph in the figure is organized in breadth-first-search
(BFS) order, so that the states at the same level can be reached
in the same minimum number of slots (but more slots are
possible). Any path through the virtual graph starting from
the initial state (where only the source has the packet) to the
end state (where all connected nodes have the packet) is the
sequence of states that results from some valid schedule. The
shortest length path through the virtual graph is equal to the
shortest schedule for broadcasting to all nodes. The shortest
path for this unweighted graph can be found using a breadth-
first-search (BFS) algorithm. Thus, for the example in Fig. 1,
the shortest path is of length 3 slots.

A. Graph Construction/Shortest Path Algorithm

The straightforward approach to the general broadcast
scheduling problem would be to construct the virtual graph in
its entirety (now using the SINR criterion), and then running a
shortest path algorithm to find the minimum schedule length.
However, it is not necessary to construct the entire virtual
graph to find the shortest schedule, but rather the virtual graph
can be constructed on the fly in conjunction with the BFS
shortest path algorithm (optimal for unweighted graphs). For
the example in Fig. 1, the states can be generated left-to-right,
starting from the top (i.e., in BFS order), until reaching the end
state, and stopping before reaching the last state in the figure.
This approach exhaustively generates all states resulting from
schedules of length 1 before moving to length 2, where all
states from schedules of length 2 are generated before moving
to length 3, etc. Therefore, once the end state is generated, the
algorithm can terminate, and the minimum length schedule is
found.

The algorithm is presented in Fig. 2 and summarized as
follows. First, the connectivity of nodes is determined using
the SINR threshold β in the absence of any other transmitters.



1: Initialize:
2: Generate graph of connectivity in the network, with neigh-

bors based on SINR threshold β
3: Initialize ordered array of states with State 1 (only the

source in Received List (RL))
4: Initialize corresponding array of distances with d(1)=0
5: Add to array State 2 (add source’s 1-hop neighbors in RL),

d(2)=1
6: n ← 2
7: while Not all connected nodes in State n’s RL and n not

at end of array do
8: for All combinations of nodes in State n’s RL that have

neighbors not in RL do
9: for All neighbors not in RL do

10: if Neighbor’s SINR exceeds threshold β then
11: Add neighbor to temporary RL
12: end if
13: end for
14: if Resulting state after adding temporary RL to RL

does not exist in the array then
15: Add new state to the end of the array
16: d(end of array)=d(n)+1
17: end if
18: end for
19: n ← n+ 1
20: end while

Fig. 2. Graph Construction/Shortest Path Algorithm

Starting with the initial state (only the source has the packet),
states are generated for each possible combination of simul-
taneously transmitting nodes (called a transmission set) with
neighbors that do not have the packet. Based on the resulting
state for each of those transmission sets, a new state is added
to the virtual graph if it has not already been generated. As the
states are generated, they are placed in an ordered array. The
states in the array are processed in order, which coincides with
a breadth-first traversal of the virtual graph. Once all of the
connected nodes have the packet, the algorithm terminates, and
the distance measure of the end state is equal to the minimum
schedule length in slots. The schedule can be determined by
maintaining a record of transmission sets that lead to each state
and traversing the breadth-first-search tree backwards from the
end state to the source.

B. Algorithm Complexity

For a general network geometry, it is difficult to analyze the
computational complexity of the algorithm above. To get an
idea, we consider a “star” topology for the network, in which
the source at the center has m multi-hop branches extending
outward from the center, each branch having an equal number
of nodes in tandem (hop length is equal to the transmission
range), and the branches do not interfere with one another.
This is possible for an arbitrary number of branches even for
a two-dimensional network since, under the assumptions of
our model, the hop length can be made arbitrarily small to

avoid interference. For a network with n destination nodes,
where n is a multiple of m, the number of states that must
be traversed is at least (n/m − 1)m, which is the number of
combinations of nodes that can have the packet in each branch,
excluding the outermost nodes. For each of these states, there
are 2m − 1 possible transmission sets, and the number of
potential receivers to be checked is equal to m (Line 10 in
the algorithm). The resulting complexity is at least equal to
m(2m − 1)(n/m − 1)m. If, for example, we fix the number
of nodes in each branch to be 3, we have m = n/3. The
complexity in this case is at least equal to (n/3)(2n/3−1)2n/3,
which is exponential in n. Therefore, the algorithm does not
scale well, even for this “star” network, where each node has
very few neighbors and interferers.

IV. LAYERED RATE ADAPTATION BROADCAST

As a computationally more efficient alternative to the op-
timal fixed-rate broadcast, we consider a layered approach1,
in which we first construct a routing tree for the network and
divide the tree into layers. Then we schedule transmissions
layer-by-layer, by constructing a schedule where each node in
layer a has identical data, and layer a needs to transmit this
data to each node in layer a + 1. When this transmission is
completed, each node in layer a + 1 has the identical data,
and only then is it ready to begin transmitting to layer a+ 2.
Optimality is sacrificed in this approach by determining the
routing tree independent of the schedule, as well as scheduling
the layers in a serial manner. However, there is also room for
gain over the previous fixed-rate approach, in that we now
allow for rate adaptation based on SINR in the scheduling
optimization between layers.

A. Routing

The first step in the layered approach is to construct a
routing tree rooted at the source. Previous approaches for
minimum latency broadcast typically use a breadth first search
(BFS) tree and assign each node to a layer in the tree, where
each layer is determined by its hop distance from the source.
We also use this approach, but with some enhancements. To
determine the connectivity between nodes, we first assume
that in the absence of interference, there is some maximum
transmission range such that any pair of nodes within range
can communicate successfully. For the BFS tree, we say that
the source node is in layer 0, and its one-hop neighbors, are
in layer 1. The source node is the parent node of the layer
1 nodes, which are, accordingly, the source node’s children.
For each node in layer 1, we say its one-hop neighbors are in
layer 2 if they are not already part of the tree, and the parent-
child assignment between layer 1 and 2 occurs according to
the ordering of nodes in the search. The process repeats for
layer 2, layer 3, etc. until all of the nodes are in the tree.

1The approach is “layered” in the sense that the routing tree is divided into
layers, and also that the routing and scheduling functions occur in separate
layers.



1) Re-assigning parents: When layers and parent-child
relationships are assigned, it is possible that a node in one
layer may be geographically closer to a node in the layer above
other than its assigned parent, since the BFS only considers
connectivity due to the maximum transmission range. To
create a better assignment for each pair of adjacent layers,
we assign to each child node the parent in the layer above
that is of minimum distance from it.

2) Re-layering: By doing a BFS-based layering, nodes are
likely to be in interference range of other nodes in the layer
directly above, lowering the achievable rates via simultaneous
transmission. To create more separation between nodes trans-
mitting simultaneously, we introduce a re-layering algorithm
that allows the layers to be more staggered without hindering
the propagation of data. Our re-layering algorithm maintains
the same tree structure for fast propagation, but some nodes
are reassigned to lower layers with which to transmit, thus
increasing the separation between nodes in the BFS layer. Note
that the order of re-assigning parents and re-layering matters,
and in our approach, we first re-assign parents to get the more
desirable tree structure before re-layering.

When re-layering, we maintain separate labels for trans-
mitting nodes and receiving nodes, since a node may receive
from layer 0, for example, and may wait until layer 2 to
transmit. We first define the transmit layering as follows.
Starting with the nodes in the last original layer (layer 3 in
Fig. 3), we label those and their direct ancestors above as in
the original tree. For the layer above the last (e.g., layer 2),
we label any leaf nodes (nodes without children) the same
as the last transmitting layer (e.g., 3), and count down as we
label the direct ancestors up the tree, and we stop when an
already-labeled ancestor is reached. This process is repeated
with the next higher layer of leaf nodes, until all nodes are
labeled. The result is that the last transmit layer (even though
it never transmits) is all of the leaf nodes, the next to last
transmit layer contains all the parents of the leaf nodes (if
not belonging to some longer branch), etc. For the receive
layering, the labels come directly from the transmit layering
and the parent-child relationships that have been previously
established. The receive layer of a receiving node is equal to
its parent’s transmit layer plus one, i.e., if the parent is in
transmit layer a, the child is in receive layer a + 1. When it
comes time to schedule the layer-by-layer transmission from
a to a+ 1, layer a refers to the transmit layer, and layer a+ 1
is the receive layer. Note that the total number of layers is not
changed in the re-layering process.

B. Scheduling Formulation

After establishing the routing structure, we schedule the
transmission for each pair of layers. The nodes in transmit
layer a have identical data and need to propagate this data
to the nodes in receive layer a + 1, none of which have the
data. In the following, we will drop the transmit and receive
terms and simply refer to them as layer a and layer a + 1.
In contrast to the optimal fixed-rate approach, we relax the
fixed rate and fixed time slot duration assumptions and allow
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Fig. 3. Re-layering example.

variable rates. Our goal for each pair of layers is to minimize
the total time duration required to broadcast the data to layer
a + 1. The total schedule length is the sum of the broadcast
time durations for all pairs of layers in the network. We again
assume that each node has a fixed transmission power, and
the maximum rate that we allow at some receiver v from
transmitter u in the presence of transmission set S is given by
R = W log2(1+SINR(v, u,S)), where W is the bandwidth.
A node u transmitting at rate R can be successfully received
by some node v provided SINR(v, u,S) ≥ 2R/W −1. Again,
we assume a distance-based path loss for the channel model
(i.e., no fading).

In previous link scheduling approaches, different combina-
tions of links (called matchings) are activated simultaneously,
with each link transmitting at a rate determined by the given
matching. The goal is to determine the time duration that each
matching needs to be activated to transmit all of the data, while
minimizing the total time duration. We adapt this approach for
the broadcast scheduling problem, in which each transmitter
may have multiple children destination nodes, so it can choose
to transmit to all of them at one low rate, or it can choose to
transmit to a subset of its children within some closer distance,
at a higher rate. We therefore have multiple activations that we
call rate-matchings, which are determined by the combination
of transmitting nodes and their intended receiving children.

Given the rate-matchings, we can formulate the scheduling
problem as a linear program in a manner similar to that of the
link scheduling problems [9], [10]:

min.
∑
k∈M

tk

subject to ∑
k∈M

rkj t
k ≥ V ∀j ∈ D (2)

tk ≥ 0

where D is the set of child nodes in layer a + 1, M is the
set of all possible rate-matchings, tk is the time duration of
activation of the kth rate-matching, rkj is the rate of the jth
child node in D for the kth rate-matching, and V > 0 is the
size of the packet to be received. Since this linear program
is a large problem with as many as 2|D| rate-matchings, we
resort to a reduced-complexity algorithm known as column



generation to generate solutions with good performance.

C. Column Generation Scheduling Algorithm

Column generation is an iterative algorithm for solving large
linear programming problems. It has been applied in many
scheduling algorithms, and in our problem, each iteration can
be broken into two parts: an activation duration module and a
group generation module [10]. The activation duration module
first solves a reduced linear program (using a subset of rate-
matchings to reduce the size of the constraint matrix and
cost function) to get activation times that are optimal for the
reduced set. Then a metric based on the dual variables is fed
to the group generation module, which selects a new rate-
matching using the metric. This new rate-matching is added
to the linear program as a column in the constraint matrix
(and in the cost function), and the next iteration starts with
the activation time module with the new augmented linear
program.

Similar to the “CG-Heuristic” approach in [10], we apply
column generation to the broadcast scheduling problem in the
following manner. We start by formulating the reduced linear
program, where only the rate-matchings with one transmitter
active are included. We call this setM1. For each transmitter,
a separate column (corresponding to a rate-matching) in the
constraint matrix is included for each child node, with a
different subset of children receiving at the rate of the farthest
child in that subset.

As an example, we consider two transmitters (A,B), each
having two children (A1, A2;B1, B2) at different distances
(dist(A,A1) < dist(A,A2); dist(B,B1) < dist(B,B2)).
The constraints for the single-activation rate matchings are
given by

r1A1t
1+r2A2t

2 ≥ V
r2A2t

2 ≥ V
r3B1t

3+r4B2t
4 ≥ V

r4B2t
4 ≥ V

For child node A1, the highest rate at which it can receive is
equal to r1A1, and A2 cannot receive at such a rate because
its SINR is not high enough. Node A1 can also receive at
the lower rate r2A2, which is the highest rate at which A2 can
receive. It turns out that the solution of this initial problem
has t1 = t3 = 0, t2 = V/r2A2, t

4 = V/r4B2. This corresponds
to only sending to the farthest child of each transmitter. This
result can be understood intuitively: for A (B) to complete
transmission to A2 (B2), it can transmit for t2 (t4) to offload
all of the data, but in the process, A1 (B1) receives the
complete packet as well, so rate-matching 1 (3) does not need
to be activated. Although the rate-matchings 1 and 3 are not
necessary to the initial solution, they may be needed in later
iterations when more rate-matchings are added, since they may
provide a complementary rate-matching that best satisfies the
constraints.

For the group generation step, a search-based algorithm
can be used to find the optimal rate-matching, but here we

1: Initialize:
2: Rank the children nodes in descending order of associated

dual variables ω
3: Choose child node 1 to be in the rate-matching m,

compute ν = ω1 · r1(SNR)
4: for All remaining children nodes do
5: if Child is farther from its parent than any of its siblings

in m then
6: Compute ν̃ =

∑
c∈m ωc · rc(SINRm)

7: if ν̃ > ν then
8: Add child node c to rate-matching m
9: ν ← ν̃

10: end if
11: end if
12: end for

Fig. 4. Rate-Matching Generation Algorithm

simply demonstrate the approach using the greedy heuristic
in Fig. 4 to iteratively choose the activations. The algorithm
first ranks the child nodes according to their associated dual
variables from the linear program. The first-ranked child node
is included in the rate-matching m at its interference-free
rate (r1(SNR)), and a metric ν is computed. Each node is
considered sequentially in ranked order as a candidate to be
added to the rate-matching. If there is a sibling node (shares
same parent) already in m that is farther from their parent,
the candidate node is skipped since it is already covered.
Otherwise, the metric is recomputed, taking into account new
levels of interference in the rates. If the metric is improved,
then the child node gets added to the rate-matching m. To
avoid highly suboptimal rate-matchings from the heuristic, we
re-run the rate-matching algorithm but start with the second-
ranked child node, and again starting with the third-ranked
child node. Of the three resulting rate-matchings, we select
the one with the largest final metric.

V. SIMULATION

We evaluate our layered broadcast scheduling algorithm
via simulation over randomly placed networks in a two-
dimensional square deployment area. We assume a fixed
transmission power of K = 23 dBm, noise level γ = −30
dBm, path loss exponent α = 3, and maximum transmission
range equal to 78 m. The power, noise, and transmission range
parameters are derived from the field test results shown in [8],
and the nodes are uniformly randomly placed in the square
area according to some constant node density.

A. Performance of Layered Approaches

To evaluate the effect of the various routing enhancements
proposed, we simulate the broadcast scheduling for various
deployment area sizes. We set the node density to λ = 10−3

nodes/m2 for sufficient connectivity. The results are shown in
Fig. 5. We note that re-parenting yields a shorter schedule
length in all cases, since it simply improves on the BFS-
tree assignment that is based only on connectivity and blind
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to parent-child distances. We also see that the re-layering
improves the schedule length more as the deployment area
increases, since the links in the new layers will be more
spread out, taking greater advantage of the spatial reuse. The
combined improvement is about 50% across the board.

B. Fixed-Rate vs. Rate Adaptation

To simulate the optimal fixed-rate approach, a smaller
number of nodes was used to generate results, due to the
computational complexity. To vary the node density and vary
the number of hops in the network for up to 24 nodes, we
generated a circular sector-shaped network with an angle of
π/4 radians, shown in Fig. 6. The source is located at the
narrow point of the sector, and we place nodes along four
branches spread across the sector. We build the network hop
by hop, where each hop after the first places nodes within the
transmission range r of the previous hop’s nodes. Each hop
includes four nodes, and the nodes are alternately staggered
by r/2 to more evenly distribute the nodes over each hop.

We plot the performance of the optimal fixed-rate approach
and the layered rate adaptation approach for this network
in Fig. 7. The SINR threshold for the optimal fixed-rate
approach is chosen to be β ≈ 0.42, corresponding to a
maximum transmission range of 78 m. Also for the fixed-rate
approach, we choose a rate equal to W log2(1 + SINRmin),
where SINRmin is the minimum SINR over all correctly
received packets in the optimal schedule. For a smaller number
of hops, the network is denser and the optimal fixed-rate
approach outperforms the layered approach, but as more hops
are added, the layered approach can take advantage of the
rate adaptation, resulting in a shorter schedule. There are a
couple of factors that are responsible for this result, namely
the optimal approach’s unlayered flexibility, as well as the
layered approach’s adaptability of the rate to the SINR (as
opposed to the optimal approach’s hard SINR constraint).

VI. CONCLUSION

In this paper, we have looked at the minimum latency
broadcast problem with interference considerations, with ap-
plications to protocol functionality as well as to more general
problems considered in network science. We have studied two
different scheduling approaches, namely a fixed-rate optimal
approach and a layered rate adaptation approach. We derived

the fixed-rate optimal approach by constructing a virtual graph
of network states and finding the shortest path. Due to the
high computational complexity of the fixed-rate approach,
we developed a layered approach that divides the nodes into
layers and schedules transmissions from one layer to the next,
allowing for rate adaptation based on SINR. We introduced a
novel re-layering enhancement and show approximately 50%
improvement over the typical approach. Lastly, we have com-
pared the optimal fixed-rate approach and the layered approach
and showed that the layered approach performs comparably
well. Furthermore, the rate adaptation in the layered approach
is shown to be effective enough in some cases to outperform
the optimal fixed-rate approach, particularly for sparse, multi-
hop networks.
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